Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36851759

RESUMO

Rift valley fever (RVF), caused by the RVF virus (RVFV), is a vector-borne zoonotic disease that primarily affects domestic ruminants. Abortion storms and neonatal deaths characterise the disease in animals. Humans develop flu-like symptoms, which can progress to severe disease. The susceptibility of domestic pigs (Sus scrofa domesticus) to RVFV remains unresolved due to conflicting experimental infection results. To address this, we infected two groups of pregnant sows, neonates and weaners, each with a different RVFV isolate, and a third group of weaners with a mixture of the two viruses. Serum, blood and oral, nasal and rectal swabs were collected periodically, and two neonates and a weaner from group 1 and 2 euthanised from 2 days post infection (DPI), with necropsy and histopathology specimens collected. Sera and organ pools, blood and oronasorectal swabs were tested for RVFV antibodies and RNA. Results confirmed that pigs can be experimentally infected with RVFV, although subclinically, and that pregnant sows can abort following infection. Presence of viral RNA in oronasorectal swab pools on 28 DPI suggest that pigs may shed RVFV for at least one month. It is concluded that precautions should be applied when handling pig body fluids and carcasses during RVF outbreaks.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Gravidez , Humanos , Animais , Feminino , Suínos , Anticorpos , RNA Viral , Sus scrofa
2.
Vaccines (Basel) ; 9(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835146

RESUMO

Dual vaccines (n = 6) against both lumpy skin disease (LSD) and bovine ephemeral fever (BEF) were constructed, based on the BEFV glycoprotein (G) gene, with or without the BEFV matrix (M) protein gene, inserted into one of two different LSDV backbones, nLSDV∆SOD-UCT or nLSDVSODis-UCT. The inserted gene cassettes were confirmed by PCR; and BEFV protein was shown to be expressed by immunofluorescence. The candidate dual vaccines were initially tested in a rabbit model; neutralization assays using the South African BEFV vaccine (B-Phemeral) strain showed an African consensus G protein gene (Gb) to give superior neutralization compared to the Australian (Ga) gene. The two LSDV backbones expressing both Gb and M BEFV genes were tested in cattle and shown to elicit neutralizing responses to LSDV as well as BEFV after two inoculations 4 weeks apart. The vaccines were safe in cattle and all vaccinated animals were protected against virulent LSDV challenge, unlike a group of control naïve animals, which developed clinical LSD. Both neutralizing and T cell responses to LSDV were stimulated upon challenge. After two inoculations, all vaccinated animals produced BEFV neutralizing antibodies ≥ 1/20, which is considered protective for BEF.

3.
Lab Anim ; 55(1): 53-64, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32588735

RESUMO

Bluetongue is a serious non-contagious vector-borne viral disease in ruminants, causing poor animal welfare and economic consequences globally. Concern has been raised about the development of novel bluetongue virus (BTV) strains and their possibly altered virulence through the process of viral reassortment. Virulence is traditionally estimated in lethal dose 50 (LD50) studies in murine models, but agreement with both in vitro and virulence in ruminants is questionable, and a refined experimental design is needed. Specific reassortants between wild-type and vaccine strains of BTV-1, -6 and -8 have previously been developed by reverse genetics. The aim of the present study was to rank the in vivo virulence of these parental and reassortant BTV strains by calculating LD50 in a murine model by using an experimental design that is new to virology: a between-patient optimised three-level response surface pathway design. The inoculation procedure was intracranial. Fifteen suckling mice were used to establish LD50 for each strain. Three parental and five reassortant virus strains were included. The LD50s varied from of 0.1 (95% confidence interval (CI) 0-0.20) to 3.3 (95% CI 2.96-3.72) tissue culture infectious dose 50/ml. The results support the hypothesis that reassortment in BTV may lead to increased virulence in mice with potential negative consequences for the natural ruminant host. The ranking showed low agreement with in vitro properties and virulence in ruminants according to existing literature. Refined design such as response surface pathway design was found suitable for use in virology, and it introduces significant ethical and scientific improvements.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/virologia , Modelos Animais de Doenças , Vírus Reordenados/patogenicidade , Projetos de Pesquisa/normas , Animais , Camundongos , Virulência
4.
Vaccines (Basel) ; 8(4)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171875

RESUMO

Lumpy skin disease is an important economic disease of cattle that is controlled by vaccination. This paper presents an investigation into the role of the lumpy skin disease virus (LSDV) superoxide dismutase (SOD) homologue on growth and histopathology of the virus both in vitro and in vivo. SOD homologue knock-out and knock-in recombinants (nLSDV∆SOD-UCT and nLSDVSODis-UCT, respectively) were constructed and compared to the Neethling vaccine (nLSDV) for growth in a permissive bovine cell line as well as on fertilized chick chorioallantoic membranes (CAMs). The infected CAMs were scored for histological changes. Deletion of the SOD homologue from LSDV reduced virus growth both in Madin-Darby bovine kidney (MDBK) cells as well as on CAMs. Furthermore, the knockout virus showed reduced inflammation in CAMs and more ballooning degeneration. A pilot experiment was performed in cattle to compare the lesions produced by the different LSDV constructs in the same animal. One animal developed a larger lesion to nLSDV∆SOD-UCT compared to both nLSDVSODis-UCT and nLSDV. Histological analysis of biopsies of these lesions shows less inflammation and necrosis associated with nLSDVSODis-UCT compared to nLSDV and nLSDV∆SOD-UCT. None of the vaccinated animals showed disseminated LSDV disease, indicating that the candidate vaccines are safe for further testing. Our results suggest that the SOD homologue may improve immunogenicity and reduce virulence.

5.
Vet Microbiol ; 243: 108614, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273026

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals, which severely decreases livestock productivity. FMD virus (FMDV), the causative agent, initiates infection by interaction with integrin cellular receptors on pharyngeal epithelium cells, causing clinical signs one to four days after transmission to a susceptible host. However, some Southern African Territories (SAT) viruses have been reported to cause mild or subclinical infections that may go undiagnosed in field conditions and are likely to be more common than previously expected. The studies presented here demonstrate that not all SAT2 viruses are equally virulent in cattle. The two SAT2 viruses, ZIM/5/83 and ZIM/7/83, were both highly attenuated in cattle, as evidenced by the mild clinical signs observed after needle challenge, while two incongruent SAT2 viruses showed significantly different clinical signs in challenged cattle. We then explored the ability of the SAT2 viruses to infect different cell types with defined receptors that are utilised by FMDV and found differences in their ability to lyse cells in culture and to compete in a controlled cell culture environment. The population sequence variation between ZIM/5/83 and ZIM/7/83 revealed multiple sites of single nucleotide variants of low frequency between the predominant virus populations, as could be expected from the genome of an RNA virus. An assessment of the biophysical stability of SAT2 virions during acidification indicated that the SAT2 virus EGY/09/12 was more resilient to acidification than the ZIM/5/83 and ZIM/7/83 viruses; however, whether this difference relates to differences in virulence in vivo is unclear. This study is a consolidated view of the key findings of SAT2 viruses studied over a 14-year period involving many different experiments.


Assuntos
Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , Variação Genética , Fenótipo , África Austral , Animais , Anticorpos Antivirais/sangue , Bovinos , Doenças dos Bovinos/virologia , Linhagem Celular , Cricetinae , Vírus da Febre Aftosa/classificação , Aptidão Genética , Concentração de Íons de Hidrogênio , Gado/virologia , Polimorfismo de Nucleotídeo Único , Sorogrupo , Temperatura
6.
Vaccine ; 33(25): 2909-16, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25930116

RESUMO

The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2(ZIM14)-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.


Assuntos
Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vacinas Virais , Adjuvantes Imunológicos , África Austral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Variação Antigênica , Bovinos , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Testes de Neutralização , Sorogrupo , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
7.
Vet J ; 197(2): 335-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23422882

RESUMO

The capability of the recently emerged European strain of bluetongue virus serotype 8 (BTV-8) to cross the ruminant placenta has been established in experimental and field studies in both sheep and cattle. Seroprevalence rates in goats in North-Western Europe were high during the recent outbreak of BTV-8; however the capability of the virus to infect goats through the transplacental route has not been established. In the present study, four Saanen goats were inoculated with the European strain of BTV-8 at 62 days of gestation; this resulted in mild clinical signs, however gross lesions observed post mortem were more severe. Viral RNA was detected by real-time RT-PCR in blood and tissue samples from three fetuses harvested from two goats at 43 days post infection. Conventional RT-PCR and genome sequencing targeting viral segment 2 confirmed infection of brain tissue with BTV-8 in two of these fetuses. In total, five of six fetuses demonstrated lesions that may have been associated with transplacental infection with BTV. Infected fetuses did not demonstrate neurological lesions. Low viral RNA concentrations in fetal blood and tissue further suggest that the infected fetuses would probably not have been born viraemic. The implications of these findings with regards to the epidemiology and overwintering of BTV-8 in Europe remains unclear.


Assuntos
Vírus Bluetongue/classificação , Bluetongue/transmissão , Doenças das Cabras/virologia , Transmissão Vertical de Doenças Infecciosas/veterinária , Placenta/virologia , Complicações Infecciosas na Gravidez/veterinária , Animais , Feminino , Cabras , Gravidez , Complicações Infecciosas na Gravidez/virologia , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...